

Magnetic Reconnection and Anomalous Cosmic Rays

Objective: Complete understanding of reconnection: how magnetic fields change topology and convert magnetic energy to kinetic and thermal energy.

Implications: Has broad importance in space (e.g. solar flares), astrophysics, and fusion experiment plasmas.

Accomplishments: Provided explanation for surprising Voyager 1 & 2 spacecraft observation of Anomalous Cosmic Rays (ACRs: ions with energies just below galactic cosmic rays).

- Required both magnetohydrodynamic (MHD) and particle-in-cell (PIC) methods.
- Drake is 2010 winner of APS Maxwell Award for Plasma Physics.
- *NERSC:* Simulations use 1,024-8,192 cores (Franklin).

J. F. Drake, et al. (U. Maryland)

2-D view of the magnetic field and flow streamlines from a high-resolution, 3-dimensional MHD simulation of the interaction of the solar wind with the interstellar medium, interplanetary and interstellar magnetic field, and ionized and neutral H atoms.

> The Astrophysical Journal (APS) 709:963– 974, February 1, 2010

